i l					N N T
i l					YAA NA. I
i l					165. 110.
i	1				8 101
					Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations Nov/Dec 2019

RANDOM SIGNAL AND STOCHASTIC PROCESSES

(Electronics & Communication Engineering)

		(Electronics & Communication Engineering)	
ime:	3 h	ours Max. Marks: 60	
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I	
1	a	Define the following with examples.	7M
		i. Sample space ii. Event iii. Mutually exclusive events. iv. Independent events.	
	b	Two cards are drawn from a 52 –card deck (the first is not replaced).	5M
		i) Given that first card is a queen, what is the probability that the second is also a Queen.	
		ii) Repeat part (i) but replace the first card with a queen and the second card with a 7.	
		OR	
2	a	Explain about Joint and Conditional probability and also state the properties of Joint	6M
		and Conditional probability.	
	b	i) Write axioms of probability.	6M
		ii) Explain probability as a relative frequency.	
		UNIT-II	
3		Explain Covariance and Correlation coefficients.	6M
	b	Discuss about Joint characteristic function and its properties.	6M
_		OR	
4		Define Expected value of a function of two random variables.	6M
	b	Explain about Joint moment generating functions? And its properties. UNIT-III	6M
5	a	Define first order, second, wide-sense and strict sense stationary process.	5 M
	b	Prove the following	7M
		i) $ R_{XX}(\tau) \le R_{XX}(0)$ ii) $R_{XX}(-\tau) = R_{XX}(\tau)$ iii) $R_{XX}(0) = E[x^2(t)]$ OR	
6	9	Write a short note on ergodic random processes.	5M
U		Determine whether the random process $X(t)=A\cos(\omega_0 t+\theta)$ is wide sense	7M
	~	stationary or not. Where A, ω_0 are constants and θ is a uniformly distributed random	7111
		variable on the Interval $(0,2\pi)$.	
		UNIT-IV	
7	a	State and prove properties of PDS.	6M
		The PSD of $X(t)$ is given by	6M
		$S_{XX}(\omega)=1+\omega^2$ for $ \omega <1$	
		0 otherwise	
		Find the Autocorrelation function.	
		OR	
8	a	Derive the relation between Autocorrelation function and Power spectral density	6M

- spectrum.
 - **b** Find the PSD of stationary random process for which the autocorrelation function is **6M** $R_{XX}(\tau) = 6e^{-\alpha|\tau|}$

UNIT-V

9	a Calculate the mean of the system response Y (t).	6M
	b If X(t) is a differentiable WSS random process and Y(t)=dX(t)/dt, find an expression	6M
	for $S_{YY}(\omega)$.	
	O.D.	

OR

10 a Write a short note on Band Pass random process.
b Derive the expression for Autocorrelation function of response of an LTI system.
6M

*** END ***